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DESIGN OF A TRANSVERSELY LAYERED CANTILEVER OF MINIMUM MASS

UNDER SPECIFIED MAXIMUM-DEFLECTION CONSTRAINT

UDC 539.3V. V. Alekhin

The problem of optimal design of a transversely layered cantilever beam of minimum mass composed
of a finite set of elastic homogeneous isotropic materials is considered for the case where a constraint
is imposed on the maximum deflection of the beam and information on the loads applied to the beam is
incomplete. It is shown that, among these loads, there exists the “worst” point load whose magnitude
is equal to the resultant of the forces applied to the beam, for which the deflection is maximal for any
material distribution along the beam. The necessary optimality conditions are obtained for the mass-
minimization problem of the beam under the “worst” loading, a numerical algorithm is developed for
the synthesis of the optimal cantilever, and a numerical example is given.

Key words: layered material, beam, optimal design and control, needle variations, maximum
principle.

Introduction. Formulations and algorithms for solving optimization problems of various layered structural
elements under wave, thermal, and mechanical loads were proposed in [1–4]. In the present paper, the optimal design
problem for a transversely layered beam of minimum mass and constant cross section, composed from a finite set
of materials, is considered using the method developed in [3]. Previously, the shape-optimization problems for a
homogeneous beam as the simplest structural element were considered [5]. The resulting designs are characterized
by abrupt variations in the height or the width of the cross section along the beam, whereas it is well known that
the one-dimensional mathematical model of the bar is adequate only for small gradients of variation in the shape
function.

1. Formulation of the Problem. Let there be a set W consisting of k elastic homogeneous isotropic
materials. Given this set, it is required to synthesize a transversely layered cantilever of minimum mass under a
constraint imposed on the maximum deflection of the beam.

We consider a beam of length l and constant cross-sectional area S whose left end is rigidly clamped and
whose right end is free. We use the Cartesian coordinate system (x, y, z) with its origin located at the left end of the
beam and the x axis directed along the beam. The beam is subjected to external transverse loads f(x). Moreover,
at the point x = xc (0 < xc < l), the load q(x), which is a point force P , is applied, i.e., q(x) = Pδ(x−xc) (Fig. 1).
Here δ is the Dirac delta function. The cantilever is bent in the (x, z) plane. It is assumed that the distributed
load f(x) and the point load q(x) are nonnegative everywhere and have a resultant that does not exceed a specified
value of P0, i.e.,

f(x) � 0, q(x) � 0,

l∫

0

f(x) dx + P � P0. (1.1)

Let σ0 and ρ0 be the characteristic scales of the stress and density, respectively. We introduce the following
dimensionless variables (below, the asterisk indicating dimensionless quantities is omitted):
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Fig. 1. Transversely layered cantilever under a continuously distributed
load f(x) and point load P .
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(1.2)

Here w(x) is the beam deflection, E(x) and ρ(x) are the Young moduli and densities of the materials of the layers,
respectively, J is the moment of inertia of the cross-sectional area S of the beam about the y axis, and M(x) and
Q(x) are the bending moment and the transverse shear force, respectively.

In the variables (1.2), the cantilever equilibrium equations and the boundary conditions are

M ′(x) = Q(x), Q′(x) = −f(x) − q(x), M(x) = −E(x)w′′(x); (1.3)

w(0) = w′(0) = M(1) = Q(1) = 0, (1.4)

where the prime denotes differentiation with respect to the x coordinate. If xc = 1, then q(x) = 0 in Eqs. (1.3) and
Q(1) = P in the boundary conditions (1.4).

At the interfaces between the layers xi ∈ (0, 1) where the Young moduli of the materials are discontinuous,
the following continuity conditions are specified: continuous deflection w, rotation w′, bending moment M , and
transverse shear force Q [in the absence of a point load from set (1.1) at the point xi]:

[w(xi)]
∣∣∣+
−

= [w′(xi)]
∣∣∣+
−

= [M(xi)]
∣∣∣+
−

= [Q(xi)]
∣∣∣+
−

= 0. (1.5)

We introduce the piecewise constant function

α(x) = {αj : xj−1 < x � xj , j = 1, . . . , n, x0 = 0, xn = 1}, (1.6)

which characterizes the structure of the transversely layered cantilever (the number, dimensions, and materials of
the layers). The values of αj belong to the finite discrete set

αj ∈ U = {1, . . . , k}, (1.7)

which corresponds to the original set of materials W , and all characteristics of the materials from this set are
functions of the distribution α(x) on the interval [0, 1]. In the optimization problem considered, the function α(x)
is taken as the control.

The problem of optimal design of the cantilever is formulated as follows. Among the piecewise constant
functions α(x) (1.6) with the range of values U (1.7) for any realization of the external loads f(x) and q(x) from
set (1.1), it is required to find the control αopt(x) that ensures a minimum of the mass functional

F0(α) =

1∫

0

ρ(x, α) dx (1.8)

under the constraint imposed on the cantilever deflection

F1(α) = max
x∈[0,1]

|w(x, α)| − w0 � 0, (1.9)

where w0 is a specified quantity.
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Since the applied load is indeterminate, the optimization problem formulated above belongs to the so-called
problems with incomplete information [5].

Before solving problem (1.1)–(1.9), we study the properties of the function w(x). Let there be a certain
distribution α(x) of materials from the set W along the cantilever. We compare the expression for the deflection
w(x) for arbitrary distributed external loads f(x) and q(x) from set (1.1) with that for the point load P0 applied
to the end of the cantilever.

We integrate Eqs. (1.3), taking into account the boundary conditions (1.4). As a result, we obtain

Q(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1∫

x

f(t) dt, x > xc ∈ (0, 1),

1∫

x

f(t) dt + P, x � xc ∈ (0, 1].

(1.10)

For the point load P0 applied to the end of the cantilever, the beam equilibrium equations and the boundary
conditions are

M̃ ′(x) = Q̃(x), Q̃′(x) = 0, M̃(x) = −E(x)w̃′′(x); (1.11)

w̃(0) = w̃′(0) = M̃(1) = 0, Q̃(1) = P0. (1.12)

Thus, Q̃(x) = P0 and x ∈ [0, 1]. By virtue of conditions (1.1) and expressions (1.10) and (1.11), we obtain
Q̃(x) � Q(x) � 0 and M̃ ′(x) � M ′(x) � 0. Since M(1) = M̃(1) = 0, then M̃(x) � M(x) � 0, x ∈ [0, 1], i.e.,
w̃′′(x) � w′′(x) � 0. Integrating the last inequality with allowance for the boundary conditions (1.4) and (1.12), we
find that w̃′(x) � w′(x) � 0. Consequently, the functions w(x) and w̃(x) increase monotonically within the interval
[0, 1] and reach a maximum value for x = 1. In this case, w̃(1) � w(1).

Thus, the point force P0 applied to the end of the cantilever is the “worst” load from set (1.1), for which
the deflection is maximal for any material distribution along the beam. Minimization of the cantilever mass is
performed for the “worst” load. In this case, the maximum deflection constraint (1.9) reduces to the condition

F1(α) = w(1, α) − w0 � 0. (1.13)

2. Necessary Optimality Conditions. To obtain the necessary optimality conditions in the optimization
problem considered, it is required to express the variations of the objective functional (1.8) and constraint (1.13)
in terms of the variation of the control α(x).

The matching conditions (1.5) on the interfaces between the layers of the cantilever allow one to introduce
the following phase variables continuous within the interval [0, 1]:

y(x) = (y1, y2, y3, y4)t = (w, w′, M, Q)t.

In the new variables, the controlled system (1.11), (1.12) with the “worst” load from set (1.1) (point force
P0 at the point x = 1) becomes

y′(x) = A(x, α)y(x); (2.1)

y1(0) = y2(0) = y3(1) = 0, y4(1) = P0. (2.2)

Here, the nonzero components aij of the matrix A(x, α) are given by

a12 = a34 = 1, a23 = −1/E(x).

Let α(x) be an admissible control from set (1.7), satisfying constraint (1.13). We consider the perturbed
control α∗(x) [6]:

α∗(x) =

{
θ(x), x ∈ M, θ(x) ∈ U,

α(x), x /∈ M, mesM � 1
(2.3)

(M ⊂ [0, 1] is the small-measure set). The variation of the objective functional F0(α) (1.8) can be written as
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δF0(M, θ) =
∫

M

{ρ(x, θ) − ρ(x, α)} dx. (2.4)

To obtain variation of constraint (1.13), we express the maximum deflection w(1, α) in terms of the phase variables
yi(x) and control α(x). From system (2.1) and boundary conditions (2.2), we obtain

w(1, α) = y1(1) =
1
P0

1∫

0

y2
3(x)

E(α)
dx. (2.5)

Using expressions (2.1) and (2.2) written in variations

δy′(x) = A(x, α)δy(x) + [A(x, α∗) − A(x, α)]y(x),

δy1(0) = 0, δy2(0) = 0, δy3(1) = 0, δy4(1) = 0,

and taking into account Eq. (2.5), we write the principal part of the increment of the functional F1(α) (1.13) as

δF1(M, θ) = δy1(1) =
1
P0

∫

M

y2
3(x)

( 1
E(θ)

− 1
E(α)

)
dx. (2.6)

We construct the extended functional

I(α) = F0(α) + λ(F1(α) + ξ2), (2.7)

where λ and ξ are the Lagrange multiplier and the penalty variable, respectively, which allow for constraint (1.13) [7].
Using expressions (2.4) and (2.6), we write the variation of the functional I(α) (2.7) as

δI(M, θ) =
∫

M

[
H(x, α, y) − H(x, θ, y)

]
dx + 2λξ δξ; (2.8)

H(x, α, y) = −ρ(x, α) − λ
y2
3(x)

P0E(α)
. (2.9)

The expression (2.9) for the function H(x, α, y) implies that the Hamilton function of the optimization problem
considered does not contain conjugate variables.

If the control α(x) is optimal (minimizing), the necessary optimality condition δI(M, θ) � 0 should hold for
any admissible control α∗(x) (2.3). Then, since the variation δξ is arbitrary and the small-measure set M can be
located densely everywhere on the interval [0, 1], relation (2.8) implies that the following conditions are satisfied for
the optimal control αopt(x):

λ
[
w(1, αopt) − w0

]
= 0, λ � 0; (2.10)

H(x, αopt, y) = max
θ∈U

H(x, θ, y). (2.11)

Expression (2.10) is the condition of supplementary nonstiffness and sign agreement [7].
Based on relations (2.10) and (2.11) implied by the necessary optimality conditions δI(M, θ) � 0, we formu-

late the maximum principle for the problem considered.
Let αopt(x) be the optimal control in problem (1.6)–(1.8), (1.13), (2.1), (2.2) for which system (2.1) subject

to the boundary conditions (2.2) has a nontrivial solution y(x). The Hamilton function H(x, θ, y) (2.9) based on
this solution reaches a maximum with respect to the argument θ for the optimal control αopt(x) for almost all
x ∈ [0, 1], i.e.,

H(x, αopt, y) = max
θ∈U

H(x, θ, y).

In this case, relation (2.10) should hold on the optimal trajectory y(x).
Thus, the optimal control αopt(x) and the corresponding optimal trajectory y(x) should satisfy the boundary-

value problem (2.1), (2.2), constraints (1.13) and (2.10), and the maximum principle (2.11) for almost all x ∈ [0, 1].
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TABLE 1

Material ρ E

Spheroplastic 0.65 270
Duralumin 2.85 7100
Titanium alloy 4.60 12,000
Steel 7.80 21,000
Copper 8.93 11,200

3. Computational Algorithm. Since, for the problem considered, the Hamilton function H(x, α, y) (2.9)
does not contain conjugate variables, the computational algorithm is as follows. Using a uniform grid of nodes {xi},
we divide the interval [0, 1] into a reasonably large number of segments of small length h = xi − xi−1 modeling
small-measure sets Mi = [xi−1, xi], i = 1, . . . , n.

Let a certain control αs(x) from the admissible range (1.7), (1.13) be known. For the segment Mi, the
phase-variable vector y(x) is characterized by its value at the point x = xi−1 + h/2. The algorithm for finding the
(s + 1)th approximation includes the following steps:

1. Solve system (2.1), (2.2) and determine the phase-variable vector y(x) at the points x = xi−1 + h/2
(i = 1, . . . , n) and the maximum deflection w(1, αs).

2. In accordance with expression (2.3), specify a new control θ∗i on the segment Mi that ensures a minimum
variation δF0(Mi, θ

∗
i ) (2.4) for the linearized constraint (1.13)

F1(α∗) ≈ F1(αs) + δF1(Mi, θ
∗
i ) � 0,

which can be combined with (2.6) to give∫

Mi

y2
3(x)

E(θ∗i )
dx �

[
w0 − w(1, αs)

]
P0 +

∫

Mi

y2
3(x)

E(αs)
dx.

If θ∗i = αs(xi−1 + h/2), perform step 2 for the next segment Mi+1. If θ∗i �= αs(xi−1 + h/2), go to step 3.
3. Set the next approximation for the control

αs+1(x) =

{
θ∗i , x ∈ Mi, θ∗i ∈ U,

αs(x), x /∈ Mi.

4. Given αs+1(x), go to step 1 and consider the segment Mi+1.
Thus, the control is improved over the entire interval [0, 1]. The process is terminated for the grid considered

if the control α(x) remains unchanged for any i = 1, . . . , n. If the solution of the problem is such that the control
α(x) takes the same value for two or several neighboring segments Mi, these segments are united into a macrolayer.
The resulting solution is a local minimum in the problem considered.

Remark 1. The set Mi may be either an elementary segment Mi proper of a combination of several segments
located at different parts of the interval [0, 1]. Varying the control α(x) simultaneously for several elementary
segments, one can avoid the deadlock situation [6] where the structure is not yet optimal but cannot, nonetheless,
be improved by locally varying the control only for one elementary segment.

4. Numerical Example. We consider a set W consisting of five materials whose dimensionless characteris-
tics are given in Table 1. It is required to design a cantilever beam of minimum mass for a given maximum-deflection
constraint. The beam is loaded by transverse forces f(x) and q(x) whose resultant is P0 = 500, and the maximum
deflection of the beam should not exceed the value w0 = 0.02. The boundary conditions (2.2) are specified on the
cantilever ends.

Various material distributions along the beam optimized were used as the initial approximations. As a result,
three optimal cantilevers of equal mass F0 = 2.962 but having different maximum deflections were obtained:

— Three-layered beam with the maximum deflection w(1) = 0.0197, consisting of a titanium-alloy layer
[0, x1], a Duralumin layer [x1, x2], and a spheroplastic layer [x2, 1] (x1 = 0.24 and x2 = 0.86);

— Five-layered beam with the maximum deflection w(1) = 0.0198, consisting of titanium-alloy layers [0, x1]
and [x2, x3], Duralumin layers [x1, x2] and [x3, x4], and a spheroplastic layer [x4, 1] (x1 = 0.14, x2 = 0.16, x3 = 0.26,
and x4 = 0.86);
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Fig. 2. Optimal cantilevers: titanium-alloy layers (1), Duralumin layers (2),
and spheroplastic layers (3).

— Seven-layered beam with the maximum deflection w(1) = 0.0199, consisting of titanium-alloy layers [0, x1],
[x2, x3], and [x4, x5], Duralumin layers [x1, x2], [x3, x4], and [x5, x6], and a spheroplastic layer [x6, 1] (x1 = 0.16,
x2 = 0.2, x3 = 0.24, x4 = 0.26, x5 = 0.3, and x6 = 0.86).

Figure 2 shows the optimal cantilevers. As one would expect, the flexural rigidity of the beam increases when
approaching the clamped end, but this is due to an increase in the Young modulus rather than in the cross-sectional
area. In this case, the bending equations of the beam remain valid since the cantilever has a constant-area cross
section.

The lightest homogeneous beam satisfying the maximum-deflection constraint for the specified load P0 is the
titanium-alloy cantilever of mass F ∗

0 = 4.6. For the optimal cantilever, the mass reduction is (1− F0/F ∗
0 ) · 100% =

35.6% compared to the lightest homogeneous beam.
This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00728).
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